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ABSTRACT 

 Genetic variation within natural populations is a cornerstone of evolutionary biology and vector management strategies. 
In houseflies (Musca domestica), allozyme markers have long served as a reliable tool to assess genetic diversity, population 
structure, gene flow, and adaptive potential. This review explores the use of allozyme electrophoresis in evaluating genetic 
variation in M. domestica populations globally, with emphasis on Indian studies. It covers enzyme systems employed, statistical 
measures used (heterozygosity, genetic identity, Hardy-Weinberg equilibrium), and the implications of findings in ecological, 
medical, and pest control contexts. The persistence of allozyme analysis as a cost-effective and informative technique highlights 
its continued relevance in contemporary entomogenetics.  
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  The common house fly, Musca domestica, is 
a synanthropic fly distributed throughout the world, 
wherever humans and domestic animals are known to 
occur. The foundation of biochemical population 
genetics was laid by Lewontin and Hubby (1966), who 
introduced the technique of gel electrophoresis for the 
study of genetic variations. Allozyme variations have 
elucidated the genetic differences in systematics and 
phylogenetics among several dipterans, especially 
mosquitoes, Tsetse flies, flesh flies, and fruit flies 
(Malacrida et al., 1996; Skevington and Dang, 2002; 
Mateus and Sene, 2007; Hsiao, 1994; Sukontason et al., 
2014; Agrawal, 1993). In flies, little work has been 
carried out on allozyme variations in India, and 
understanding their genetic variation helps in mapping 
population connectivity, insecticide resistance evolution, 
and environmental adaptability (Loxdale and Lushai, 
1998; Chakrabarti, 2005; Tripathi et al., 2011). Among 
various molecular tools, allozyme electrophoresis has 
been historically valuable due to its simplicity, 
reproducibility, and ability to reveal codominant genetic 
differences (Richardson et al., 2012; Kucuktas and Liu, 
2007; Anne, 2006). 

Allozymes remain a very valuable tool for 
studies in population genetics due to their cost-effective 
nature (Murphy et al., 1996). Allozyme variations have 
unravelled changes in genotype frequencies about 
spatial, seasonal, and temporal variations, emphasizing 
the role of environment in space and time to maintain 
genetic polymorphism, with gene-level regulation 
influencing responses to genotoxic agents (Barker et al, 
1986; Bubliy et al., 1999; Hederick et al., 1976; 
Kraushaar et al., 2002; Land et al., 2000; Malacrida et al., 
1992; Milankov et al., 2002; Nayar et al., 2003; 
Srivastava et al., 2016). The house fly Musca domestica, 
a synanthropic fly with worldwide distribution, can 
rapidly colonize a variety of habitats, implying that they 

have a tremendous capacity to adapt to environmental 
conditions. The spatial, temporal, and seasonal genetic 
variations in house fly populations have been analyzed 
only in the New World populations from the USA, UK, 
and Africa (Black et al., 1986; Cummings and Krafsur, 
2005; Krafsur et al., 1992, 2000; Marquez and Krafsur, 
2002; Marquez et al., 2001; Stanger, 1984). Also, some 
studies were carried out to determine the genetic 
variation among three populations of Musca domestica 
from Uttar Pradesh (India) using different allozyme 
analysis (Srivastava et al., 2012). These studies may also 
be helpful in genetic characterization of several dipterans 
by resolving the biochemical and genetic components 
(Singh and Thakur, 2012; Srivastava et al., 2012; 2013, 
2015). 

Despite the advent of advanced molecular 
markers, allozyme analysis remains a robust and cost-
effective tool for assessing genetic variation, particularly 
in non-model organisms like the housefly. Its ability to 
detect codominant alleles and reveal functional 
polymorphisms at the protein level offers valuable 
insights into population structure, gene flow, and 
evolutionary dynamics. In M. domestica, allozyme 
markers should be extensively employed to understand 
spatial and temporal patterns of genetic differentiation 
across varied ecological landscapes. This review 
synthesizes the current understanding of allozyme-based 
genetic studies in houseflies, highlighting their relevance 
in evolutionary genetics, population monitoring, and 
vector control strategies. 

Allozymes as Genetic Markers in Housefly 

Allozymes are variant forms of enzymes 
encoded by different alleles at the same locus. These are 
separated and identified by their migration patterns on 
starch or polyacrylamide gels. They allow for direct 
estimates of allele frequency, polymorphism level, 
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observed (Ho) and expected (He) heterozygosity, Hardy-
Weinberg equilibrium, and genetic distance and identity 
(Anne 2006; Berg and Hamrick, 1997; Liu and Furnier, 
1993). They are particularly informative in revealing 
functional variation and adaptive potential in wild 
populations. Numerous enzyme loci have been analyzed 
in housefly populations, such as Acid Phosphatase 
(ACPH), Alkaline Phosphatase (APH), Malate 
Dehydrogenase (MDH), Lactate Dehydrogenase (LDH), 
Glucose-6-phosphate dehydrogenase (G6PD), and Malic 
Enzyme (ME) (Steiner, 1993; Tripathi et al., 2011; 
Tripathi et al., 2015). These enzymes reflect variation in 

both glucose-metabolizing and non-glucose-
metabolizing pathways. Allozyme-based Nei’s genetic 
identity (I) values often show >0.8 for closely located 
populations, but drop below 0.6 for populations 
separated by geographic or anthropogenic barriers 
(Butlin and Tregenza, 1998; Stacy, 2001). These data 
help delineate between the isolated and connected 
populations and selective pressure gradients. Allozyme 
markers provide a wide range of genetic information in 
the housefly, assisting the prospects in population studies 
(Table 1). 

 
 
Table 1: A list of some commonly Used Allozyme Markers in M. domestica and their applications in genetic studies 

Enzyme Marker Locus Function Genetic Insight Reference 

Acid Phosphatase ACPH Lysosomal activity Population differentiation Tripathi et al., 2010 

Alkaline Phosphatase APH Digestive enzyme 
Hardy-Weinberg deviations, 
allele polymorphism 

Srivastava et al., 
2012 

Malate Dehydrogenase MDH Energy metabolism High heterozygosity, gene flow Krafsur et al., 1992 

Malic Enzyme ME 
NADP-linked 
metabolism 

Adaptive variation 
Black & Krafsur, 
1985 

Lactate Dehydrogenase LDH Anaerobic glycolysis Ecotypic variation Sharma et al., 2009 

Glucose-6-phosphate 
Dehydrogenase 

G6PD Detoxification pathway Resistance studies 
Tewari & Thakur, 
1994 

Global and Indian Housefly Populations 

Studies from the USA, Europe, and Africa 
revealed high levels of allozyme polymorphism, 
significant geographical differentiation, and gene flow 
across regions. Indian investigations revealed 33–100% 
polymorphic loci, moderate to high heterozygosity, and 
deviation from Hardy-Weinberg equilibrium in urban 
populations, likely due to inbreeding, selection, or 
founder effects. The genetic variability in houseflies is a 
requisite for their survival and effective environmental 
stress response (Sharma et al., 2009). Some research 
group advocates the use of allozyme heterozygosity as an 
important measure for the study of population fitness and 
adaptive potential (Beardmore 1983; Allendorf & Leary 
1986; Houle 1989); while some of the studies restraint 
these genetic data indicating a small portion of the 
genome, hence not good enough for studies related to 
adaptive genetic differences (Hedrick and Miller 1992; 
Reed and Frankham 2001). Allozyme markers have been 
largely used worldwide as well as in the Indian 
subcontinent for the assessment of genetic variations 
among house fly populations (Stanger 1984; Black IV 
and Krafsur 1985; Krafsur et al. 1992; Tripathi et al. 

2010; Tripathi et al. 2011; Tripathi et al. 2012; Tripathi 
et al.  2015).  

In one of the genetic variation studies in M. 
domestica, the genetic identity values among the three 
populations studied are lower, mainly attributed to the 
fact that the three populations surveyed were separated 
by physical barriers that prevent gene flow (Srivastava et 
al. 2012). Several factors, such as colonization, host and 
reproductive pressures, cause the genetic variation, 
subject to the species richness, distribution, and different 
environmental conditions, leading to genetic 
heterozygosity compared to restricted species 
distribution (Narang 1980; Santos et al., 2005). Some 
studies have suggested that the genetic variability is 
found to be higher for the non-glucose metabolizing 
system enzyme group than for the glucose metabolizing 
system enzyme group in the M. domestica population 
through allozyme analysis (Tripathi et al. 2015), as 
elucidated by the neutral theory of Kimura (Kimura 
1983).  

Significance of Allozymes 

Populations showing high variation in 
detoxification enzymes may exhibit enhanced resistance 
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profiles. Housefly populations in diverse climates 
maintain variation necessary for survival under stress 
(Tripathi et al., 2011). Genetically differentiated fly 
populations may vary in vectorial capacity and pathogen 
association, giving useful insights into disease 
epidemiology, vector control, and ecology. Additionally, 
allozyme markers are inexpensive, require minimal DNA 
processing, and are codominant and interpretable, 
functional protein-level variations (Crozier, 1993; 
Richardson et al., 2012). Despite its relevant advantages, 
it carries some limitations, like limited genome coverage, 
being affected by environmental factors, being less 
informative than SNPs or microsatellites, or other 
molecular markers (Al-Samarai and Al-Kazaz, 2015; 
Helyar et al., Nielsen, 2011; Putman and Carbone, 2014). 
Although high-throughput genotyping is more 
comprehensive, allozyme analysis remains a valuable 
first-tier screening method, especially in resource-
limited settings. Combining allozymes with molecular 
markers can offer multi-dimensional insights into the M. 
domestica population dynamics. 

CONCLUSION 

Allozyme markers have played a pivotal role in 
unravelling the genetic diversity and population structure 
of M. domestica. Through electrophoretic analysis of 
enzyme polymorphisms, researchers have gained 
insights into the extent of genetic variation, levels of 
heterozygosity, and evolutionary forces shaping housefly 
populations across different geographical regions. These 
studies have revealed both intra- and inter-population 
diversity, highlighting the influence of ecological 
conditions, anthropogenic factors, and natural selection. 
Although newer genomic tools have expanded the scope 
of population genetics, allozyme analysis continues to be 
a valuable, accessible, and informative method, 
especially in resource-limited settings. Future studies 
integrating allozymes with molecular markers such as 
microsatellites or SNPs can offer a more comprehensive 
understanding of adaptive potential and gene flow in this 
medically important insect species. Allozyme markers 
continue to be a vital tool for assessing population-level 
genetic diversity in houseflies. Their application in India 
and globally has illuminated important evolutionary and 
ecological trends as depicted by speciation and host-
pathogen interactions. As houseflies remain major 
disease vectors and urban pests, continued genetic 
monitoring using allozyme and molecular tools is 
essential for effective management and ecological 
forecasting. 
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